istilik mübadiləsi

ру теплообмен en heat exchange de Wärmeaustausch fr échange de chaleur es cambio de calor it cambio di calore
istilik mübadilə səthi
istilik müqaviməti
OBASTAN VİKİ
İstilik mübadiləsi
İstilik mübadiləsi — İqlimin vacib cəhətlərindən olan atmosferin istilik rejimi atmosfer havası və ətraf mühit arasındakı istilik mübadiləsi ilə müəyyən olunur. Bu zaman ətraf mühit kimi kosmik fəza və qonşu hava kütləsi və yer səthi başa düşülür. İstilik mübadiləsi radiasiya yolu ilə, başqa sözlə havadan şüalanma və Günəş radiasiyasının hava ilə udulması yolu ilə reallaşır. Digər tərəfdən bu hava və yer səthi arasında istilikkeçirmə və atmosfer daxilində turbulentlik vasitəsilə baş verir. Yer səthi və atmosfer arasında istilik mübadiləsi həm də buxarlanma və növbəti kondensasiya zamanı baş verə bilər. Troposferdə günəş radiasiyasının birbaşa udulması çox azdır, belə ki, o havanın temperaturunu gün ərzində 0,50C qaldıra bilər. Havadan uzundalğalı şüalanma vasitəsilə istiliyin itməsi bir qədər daha çoxdur. Atmosferin istilik rejimi üçün istilikkeçirmə vasitəsilə yer səthi ilə istilik mübadiləsi həlledici əhəmiyyət daşıyır. Yer səthi ilə birbaşa təmasda olan hava kütləsi onunla molekulyar istilikkeçirmə yolu ilə istilik mübadiləsi edir. Atmosferdə daha effektiv istilik mübadiləsi turbulent istilikkeçirmə yolu ilə gedir.
İstilik
İstilik — fiziki kəmiyyət olub, materialın halını xarakterizə edir. O kinetik enerjinin köməyi ilə mikroskopik və termodinamikanın köməyi ilə makroskopik təyin edilə bilir. Termodinamikada istilik bir sərhəddən başqasına enerjini nəql etdirir. İstilik temperatur qardiyenti verildikdə proses parametri kimi işlənə bilir. Ümumilikdə istilik çox vaxt istilik enerjisi və ya temperatur ilə dəyişik salınır. İstilik bir sərhəddən başqasına keçdikdə heç də həmişə temperatur dəyişikliyi baş vermir. istiliyin maddəyə daxil olması çox vaxt hal dəyişikliyi ilə müşayət olunur. İstiliyin verilməsi temperaturun qalxmasına təsir edə və bununla hal dəyişiliyini yarad bilər (məsələn, buzun əriməsi) və təzyiqinin dəyişməsinə təsir edə bilər. İstilik və temperatur bir-biri ilə entropiya ilə əlaqələndirilir.
Hemproteidlərin mübadiləsi
Hemproteidlərin mübadiləsi – toxuma və hüceyrələrdə hemoqlobin və porfirinin sintezi və parçalanmasıdır. Hemproteidlərin sintez edilməsi və parçalanması iki əsas səbəbə görə tədqiqatçıların və həkimlərin diqqətini cəlb edir. Birincisi — hemoqlobinin xlorofilləşməsində sitoxromlar olduqca geniş miqyasda bioloji vacib rol oynadıqlarına görə, başqa sözlə, porfirin halqası molekulda mərkəzi rol oynayır və metal ionları ilə koordinasion əlaqə əmələ gətirir. İkincisi, porfirinin sintezinin və parçalanması, onların zülal ilə kompleks əmələ gətirməsi insan orqanizminin funksiyalarını pozur və xəstəliyin inkişafına səbəb olur. İnsan orqanizmində 4,5–5 qram dəmir olur. Bunun 60–70 faizi hemoqlobinin payına düşür. 3–5% isə mioqlobinin, 20 faizi (17-dən 23%-ə qədər) ferritin, təxminən 0,18 faizi transferrinin və toxumalarının funksional dəmiri 5 faizə qədər olur. Orqanizmdə dəmirin miqdarı qida ilə daxil olanın bağırsaqlarda sorulma intensivliyindən asılıdır. Onun artıq miqdarı bağırsaqlar tərəfindən sorulmur. Müxtəlif anemiya hallarında dəmirə olan tələbat kəskin artır.
Karbohidrat mübadiləsi
Karbohidrat mübadiləsi — Karbohidrat mübadiləsi canlı orqanizmlərdə karbohidratların metabolik formalaşması, parçalanması və qarşılıqlı çevrilməsindən məsul olan bütün biokimyəvi proseslərdir. Karbohidratlar bir çox əsas metabolik yolların mərkəzidir. Bitkilər fotosintez yolu ilə karbon dioksid və sudan karbohidratlar sintez edərək, günəş işığından udulmuş enerjini daxildə saxlamağa imkan verir. Heyvanlar və göbələklər bitkiləri istehlak etdikdə, enerjini hüceyrələrə çatdırmaq üçün bu yığılmış karbohidratları parçalamaq üçün hüceyrə tənəffüsündən istifadə edirlər. Həm heyvanlar, həm də bitkilər sərbəst buraxılan enerjini müxtəlif hüceyrə proseslərində istifadə etmək üçün müvəqqəti olaraq ATF kimi yüksək enerjili molekullar şəklində saxlayırlar. İnsanlar müxtəlif karbohidratlar istehlak edə bilər, həzm mürəkkəb karbohidratları maddələr mübadiləsi üçün bir neçə sadə monomerə (monosaxaridlərə) parçalayır: qlükoza, fruktoza, mannoz və qalaktoza. Qlükoza toxumalardakı hüceyrələrə paylanır, burada parçalanır və ya qlikogen kimi saxlanılır. Aerob tənəffüsdə qlükoza və oksigen enerjini buraxmaq üçün metabolizə olunur, karbon dioksid və su son məhsuldur. Fruktoza və qalaktozanın çoxu qaraciyərə gedir və burada qlükoza və yağa çevrilə bilər . Bəzi sadə karbohidratlar, daha mürəkkəb karbohidratlardan yalnız bir neçəsi kimi öz fermentativ oksidləşmə yollarına malikdir.
Maddələr mübadiləsi
Maddələr mübadiləsi, istehsal dağıtma (və ya assimilyasiya etmə) canlıda həyatın davam etdirilməsi əsnasında reallaşan bütün kimyəvi proseslərdir. Hər orqanizm, böyümə, inkişaf, istilik, hərəkət, artma kimi həyati fəaliyyətləri davam etdirə bilmək üçün xarici ətrafdan bəzi maddələr və enerji almaq məcburiyyətindədir. Bu maddələr və enerji, həyati fəaliyyətlərin davam etdirilə bilməsi üçün lazım olan orqanik molekulların sintezlənməsində istifadə ediləcək. Xarici ətrafdan alınan orqanik və ya qeyri-üzvi molekullar, ya əvvəl parçalanaraq, məhvə uğradılaraq ya da məhv gərək qalmadan lazımlı molekulların sintezlənməsində istifadə edilir. Daha kompleks quruluşdakı mollekullardan ibarət olan maddələrin orqanizmdə, daha sadə quruluşlu molekullara dağıtması proseslərinə maddələr mübadiləsinin katabolizma prosesləri deyirlər. Daha sadə quruluşdakı mollekulların, daha kompleks quruluşdakı mollekulların sintezində istifadə edilməsi isə anabolizma tepkimeleridir. Orqanizmdə bir reaksiyanın başlanğıc maddəsindən məhsula çevrilməsi müddətində meydana gələn kimyəvi dəyişikliklərə ara maddələr mübadiləsi, bu dəyişikliklər əsnasında meydana gələn ara məhsullara metabolitlər adı verirlər. Maddələr mübadiləsini şərti olaraq aşağıdakı mərhələlərə bölmək olar: Həzm mədə-bağırsaqda həzmedici fermentlərin (pepsin, tripsin, ximotripsin və s.) təsiri ilə mürəkkəb tərkibli qida kiçikmolekullu birləşmələrə çevrilir və müxtəlif metobolizmə uğrayır; Bağırsaqlarda sorulma gedir. Həzm edilmiş maddələr qana daxil olur və qan vasitəsi ilə müxtəlif üzv və toxumalara çatdırılır; Daşınan maddələrin qurulması və həmin orqanizm üçün xarakter olur; Daxil olmuş birləşmələr əlavə və son məhsullara parçalanır; Mübadilə olunmuş son məhsullar orqanizmdən xaric olur. Ən qiymətli bioloji karbohidratlar nişasta və qlikogen polisaxaridləridir.
Yağ mübadiləsi
Lipid metabolizmi hüceyrədə lipidlərin sintez və parçalanma reaksiyaları bütünüdür. Bu mexanizmlərə enerji əldə etmək üçün yağların parçalanması və ya ehtiyat olaraq saxlanması, membran kimi hüceyrəvi strukturlardakı lipidlərin, eləcə də, funksional lipidlərin biosintezi daxildir. Ümumi "lipidlərə" neytral yağların bir qrupu və lipoidlər aiddir. Bu sinfə daxil olan birləşmələrin əsas fiziki xassəsi üzvi həlledicilərdə (benzol, petrolein efiri, xloroform, benzin, aseton, dietilefiri və s.) yaxşı, suda isə çox pis həll olmasıdır. Lipidləri kimyəvi tərkiblərinə görə aşağıdakı qruplara bölürlər:a) yağlar (neytral yağlar, yaxud triqliseridlər); b) böyükmolekullu alifatik turşular; c) fosfatitlər (fosfolipidlər); ç) serebrozidlər, sterin və steridlər; d)qanqliozidlər; ə) mum və mumabənzər maddələr. Yağlar və lipidlər insan və heyvan orqanizmində böyük rol oynayır. Ehtiyat yağları orqanizmin enerji mənbəyidir. Onlar hüceyrə protoplazmasının struktur komponentlərindən biridir. Yağların hidrolitik parçalanması bir neçə mərhələdə davam edir. Lipaza, əsasən, triqliserid molekulunun alfa-efir birləşməsinə təsir göstərir.
Valyuta mübadiləsi
'Qalın mətn'Valyuta mübadiləsi — fərqli dəyər tarixləri olan eyni məbləğ üçün iki əks konvertasiya əməliyyatının birləşməsidir. Mübadiləyə gəldikdə, daha yaxın əməliyyatın icra tarixi dəyər tarixi adlanır və daha uzaq əks əməliyyatın icra tarixi mübadilənin bitmə tarixidir. Valyuta mübadiləsi əməliyyatlarının əksəriyyəti 1 ilə qədər müddətə bağlanır. Əgər tarixdə ən yaxın konvertasiya əməliyyatı valyutanın alınmasıdırsa (adətən əsas olan), daha uzaq olanı isə valyutanın satışıdırsa, belə mübadilə "alıb/satılmış" adlanır. Əgər başlanğıcda valyutanın satışı üzrə əməliyyat həyata keçirilirsə və əks əməliyyat valyutanın alınmasıdırsa, bu mübadilə "satılmış/alıb" adlanacaq. Bir qayda olaraq, valyuta mübadiləsi əməliyyatı bir qarşı tərəflə həyata keçirilir, yəni hər iki konvertasiya əməliyyatı eyni bankla həyata keçirilir. Bununla belə, mübadilə fərqli banklarla bağlanmış eyni məbləğə fərqli dəyər tarixləri olan iki əks konvertasiya əməliyyatının kombinasiyası adlandırmağa icazə verilir — bu qurulmuş mübadilədir. Mübadilə xətti — müxtəlif ölkələrin iki mərkəzi bankı arasında sabit məzənnələrlə valyutaların qarşılıqlı mübadiləsinə dair razılaşmadır. Məsələn, Fed özü üçün avro götürür, AMB-yə dollar verir. Eyni zamanda, hər iki mərkəzi bank sadəcə olaraq öz milli valyutasını buraxır və dərhal dəyişdirirlər.
Əsir mübadiləsi
Əsir mübadiləsi — əsirləri – hərbi əsirlər, casuslar, girovlar və s. azad etmək üçün qarşıdurmada olan tərəflər arasında sövdələşmə. Bəzən cəsədlər mübadilənin bir hissəsi olurlar. Cenevrə Konvensiyalarına əsasən, xəstəlik və ya əlillik səbəbindən müharibə səylərinə töhfə verə bilməyən məhbuslar öz ölkələrinə geri qaytarılmaq hüququna malikdirlər. Bu, belə təsirə məruz qalan əsirlərindən sayından asılı olmayaraq qüvvədədir. Əsir götürən dövlət həqiqi tələbi rədd edə bilməz. 1929-cu il Cenevrə Konvensiyasına əsasən, bu, 68–74-cü maddələr və əlavə mətn ilə əhatə olunur. Ən böyük mübadilə proqramlarından biri Beynəlxalq Qızıl Xaç Cəmiyyəti tərəfindən İkinci Dünya müharibəsi zamanı bu şərtlər altında həyata keçirilirmişdir. 1949-cu il Üçüncü Cenevrə Konvensiyasına əsasən, bu, 109–117-ci maddələrlə əhatə olunur.
İstilik balansı
Yer səthində və atmosferada eyni zamanda istər qısa dalğalı (düz və səpələnən) və istərsə də uzun dalğalı (Yerin və atmosferanın şüalanması) radiasiya axınları müşahidə edilir. Deməli hər hansı bir anda yer səthində radiasiyanın gəliri və çıxarı vardır. Radiasiya balansı istilik balansının ən əsas üzvlərindən biri olub belə sadə düsturla idarə olunur: B=LE+V+P B — radiasiya balansı LE — buxarlanmaya sərf olunan istilik, V — səth örtüyü ilə hava arasında istilik mübadiləsi, P — torpaqda istilik axınıdır İstiliyin gəlir və çıxarına uyğun olaraq istilik balansı ünsürləri müsbət və ya mənfi kəmiyyətlərə malik ola bilər. Çoxillik nəticədə torpaqğın yuxarı təbəqələrinin və Dünya okeanının suyunun orta çoxillik temperaturası daimi hesab edilir. Ona görə də torpaqda və Dünya okeanında üfiqi və şaquli istilik mübadiləsi təcrübi olaraq sıfıra bərabər hesab edilir. Ümumiyyətlə bütün yer kürəsi üçün buxarlanmaya sərf olunan istiliyin illik miqdarı quru üçün 25, okean üçün 59 kkal/sm2-ə bərabərdir. Bu rəqəmlər quru və okeanın radiasiya balansının uyğun olaraq 51 və 82%-ni təşkil edir. Bu rəqəmlərdən aydın olur ki, il ərzində quru səthindən 41 sm, okeanların səthindən isə 100 sm su buxarlanır.
İstilik dövranı
Atmosfer proseslərinin üç əsas tsikli var ki, onlar havanın formalaşmasına və iqlimin yaranmasında iştirak edirlər. Bunlar iqliməmələgətirən proseslərdir; istilik dövranı rütubət dövranı atmosfer sirkulyasiyası İstilik dövranı məfhümu mürəkkəb prosesi, yəni yer-atmosfer sistemində istilik almağı, verməyi, daşımağı və istiliyi itirməyi təsvir edir. Günəşdən Yerə gələn günəş radiasiyası axını, qismən atmosfer fəzaya əks etdirir. Bu enerji Yer kürəsi üçün itmiş sayılır. Digər qismi atmosferi keçir və onun bir hisssəsini atmosfer udub istiliyə çevirir. Digər hissəsi səpələnir və spektral tərkibi dəyişir. Düz günəş radiasiyası və səpələnən radiasiya yer səthinə düşür, qismən əks olunur, ancaq böyük bir hissəsini udaraq istiliyə çevrilərək torpağı və sututarların üst qatını qızdırır. Yer səthinin özü infraqırmızı şüa buraxır ki, onun böyük hissəsini atmosfer udaraq qızır. Atmosfer de öz növbəsində infraqırmızı şüa buraxır ki, onun böyük hissəsini yer səthi udur. İstilik dövranında vacib proseslərdən birihava axını ilə istiliyin bir yerdən digər yerə aparılmasıdır.
İstilik dəyişdirici
İstilik dəyişdirici — istiliyin iki və daha artıq maye və ya qaz arasında ötürülməsini təmin edən sistemdir. İstilik dəyişdiricilər həm isitmə, həm də soyutma sistemlərində istifadə olunur. İstilik dəyişdiricidəki maye və ya qaz, qarışmasının qarşını almaq üçün bərk divarla ayrıla bilər və ya birbaşa təmasda ola bilər. Onlar, məkanların qızdırılmasında, soyuducularda, hava sistemlərində, elektrik stansiyalarında, kimyəvi zavodlarda, neft emalı zavodları, təbii qaz emalı və kanalizasiya təmizlənməsi sistemlərində istifadə olunur. İstilik dəyişdiricilərinin axın tənzimləmələrinə görə üç əsas təsnifatı var. Paralel axan istilik dəyişdiricilərində iki maye eyni anda dəyişdiriciyə daxil olur və bir-birinə paralel olaraq digər tərəfə keçir. Əks axın istilik dəyişdiricilərində mayelər əks istiqamətdən dəyişdiriciyə daxil olur. Maye və ya qazın vahid kütləsinə düşən ötürülən istilik miqdarı cəhətdən əks cərəyan dizaynı ən səmərəli dizayndır. Bu, əks axındakı istənilən iki nöqtə arasındakı orta temperatur cəminin paralel axına nisbətən daha çox olması ilə əlaqədardır. Çarpaz axını olan bir istilik dəyişdiricisində isə maye və ya qazlar bir-birinə təxminən perpendikulyar istiqamətdə hərəkət edir.
İstilik dəyişdiricisi
İstilik dəyişdirici — istiliyin iki və daha artıq maye və ya qaz arasında ötürülməsini təmin edən sistemdir. İstilik dəyişdiricilər həm isitmə, həm də soyutma sistemlərində istifadə olunur. İstilik dəyişdiricidəki maye və ya qaz, qarışmasının qarşını almaq üçün bərk divarla ayrıla bilər və ya birbaşa təmasda ola bilər. Onlar, məkanların qızdırılmasında, soyuducularda, hava sistemlərində, elektrik stansiyalarında, kimyəvi zavodlarda, neft emalı zavodları, təbii qaz emalı və kanalizasiya təmizlənməsi sistemlərində istifadə olunur. İstilik dəyişdiricilərinin axın tənzimləmələrinə görə üç əsas təsnifatı var. Paralel axan istilik dəyişdiricilərində iki maye eyni anda dəyişdiriciyə daxil olur və bir-birinə paralel olaraq digər tərəfə keçir. Əks axın istilik dəyişdiricilərində mayelər əks istiqamətdən dəyişdiriciyə daxil olur. Maye və ya qazın vahid kütləsinə düşən ötürülən istilik miqdarı cəhətdən əks cərəyan dizaynı ən səmərəli dizayndır. Bu, əks axındakı istənilən iki nöqtə arasındakı orta temperatur cəminin paralel axına nisbətən daha çox olması ilə əlaqədardır. Çarpaz axını olan bir istilik dəyişdiricisində isə maye və ya qazlar bir-birinə təxminən perpendikulyar istiqamətdə hərəkət edir.
İstilik enerjisi
İstilik enerjisi (İE) - kömür, odun, neft, təbii qaz kimi yanacaqların yandırılmasıyla istilik enerjisi ortaya çıxmaqdadır. Əldə edilən istilik enerjisi əvvəlcə turbinlər köməyiylə mexaniki enerjiyə, daha sonra da generatorlar köməyiylə elektrik enerjisinə çevrilmək xüsusiyyəti vardır. İnsanlar gündəlik həyatlarında evlərdə, qışda istilənmək zamanı, mətbəxdə və ya yemək bişirmək üçün istilik enerjisindən tez-tez istifadə edirlər.
İstilik miqdarı
Cisimlər arasında istilik vermə ilə baş verən daxili enerjinin dəyişmə prosesi istilik miqdarı adlanan fiziki kəmiyyətlə xarakterizə edilir. İstilik miqdarı - istilik mübadiləsi zamanı cismin aldığı və ya verdiyi enerjidir. İstilik miqdarı "Q" hərfi ilə işarə olunur.
İstilik releləri
Bimetal — iki və ya daha çox müxtəlif metallardan hazırlanmış layların birləşməsindən əldə olunan material. Elektrik avadanlıqlarının hazırlanmasında istifadə olunur. Elektrik avadanlıqlarının uzunömürlülüyü yüksək dərəcədə onların artıq yüklənməsindən asılıdır. Elektrik avadanlıqları artıq yüklənmə cərəyanlarından mühafizə etmək üçün bimetallik elementli istilik releləri geniş yayılmışdır. Bimetallik element müxtəlif xətti genişlənmə əmsalına α malik olan iki lövhədən ibarətdir. Onlar bir-biri üzərinə qoyular və sərt bərkidilir və ya qaynaq olunur. Əgər belə elementi tərpənməz bərkitsək və qızdırsaq, onda onun α əmsalı aşağı olan materiala tərəf əyilməsi baş verir. Artıq yük cərəyanının təsiri altında bimetallik lövhənin belə qızması və əyilməsi sayəsində lövhənin sərbəst ucuna bərkidilmiş kontakt açılır və avadanlığın idarə dövrəsini qızdıraraq, onu artıq yüklənmədən mühafizə edir.
İstilik sistemi
İstilik sistemi — Süni qızdırmadır. İstilik sistemlərində kompensasiya məqsədilə Yer Verilmiş səviyyədə İstilik keçirmə Xüsusiyyəti var. İstilik sistemində həmçinin bu funksiyanı yerinə yetirən qurğular və sistemlər də var. İstilik keçirmə xüsusiyyəti üstünlük olan üsulundan asılı olaraq yerləşdirmələrin istilik sistemi Konveksiyalı və Şüalı ola bilər. İstilik sisteminin növü, isti və soyuq havanın həcmlərinin qarışdırılması nəticəsində isti ötürülür. Konveksiyalı istilik sisteminin çatışmazlıqlarına içəridə (havanın yüksək temperaturu yuxarı və aşağı) və qeyri-mümkünlüyü temperaturların böyük fərqinə aiddir. İstilik sisteminin əsas növü, şüayla örtülür. İstilik sistemi üçün cihazlar bilavasitə altında və ya qızdırılan zonanın üstündə yerləşir (Polda və ya tavana quraşdırıb keçirilmiş, həmçinin divarlara və ya tavanın altında möhkəm bərkidilə bilərlər.
İstilik tutumu
İstilik tutumu və ya istilik sığışması bir maddənin istiliyinin 1 °C dəyişdirmək üçün tələb olunan istilik miqdarıdır, başqa sözlə, bir cismin istiliyinin temperaturuna görə törəməsidir. Cismin kütləsi ilə öz istiliyinin hasilinə bərabərdir. (m.c) C = ( δ Q d T ) {\displaystyle C=\left({\frac {\delta Q}{dT}}\right)} ifadəsi ilə göstərilir. Bu ifadədə δ Q {\displaystyle \delta Q} istilik dəyişməsi, δ T {\displaystyle \delta T} temperatur dəyişməsidir. SL sistemində vahidi coul/Kelvindir Bir cismin vahid kütləsinin temperaturunu vahid dərəcə ilə dəyişdirmək üçün tələb olunan istiliyə xüsusi istilik tutumu və ya xüsusi istilik deyilir. SI sistemindəki vahidi joule/qram kelvindir. İstilik tutumu maddələr üçün fərqləndirici bir xüsusiyyət deyildir.
İstilik şüalanması
İstilik şüalanması — temperaturu mütləq sıfırdan fərqli olan istənilən cisim elektromaqnit dalğaları şüalandırır. Belə şüalanma həmin cismin istilik enerjisinin ehtiyatı hesabına baş verir. Şüalanan cismə kənardan əlavə enerji verilmədiyi halda onun enerji ehtiyatı azaldığından temperaturu get-gedə aşağı düşür. Digər tərəfdən, bu şüalanma hər hansı cisim tərəfindən udulduqda onun istilik enerjisi ehtiyatını artırır - cisim qızır. Elə bunlara görə də həmin şüalanma istilik şüalanması, yaxud temperatur şüalanması adlanır. İstilik şüalanması bütün digər növ şüalanmalardan fərqli olaraq tarazlıqlı şüalanmadır. Kimyəvi reaksiyalar nəticəsində meydana gələn şüalanma müstəsna olmaqla bütün şüalanma növlərində şüaburaxma, sistemin həyəcanlanmış haldan əsas hala keçməsi nəticəsində baş verir. İstilik şüalanmasını digər növ şüalanmalardan, məsələn lüminesensiyadan fərqləndirən cəhət şüalanma nəticəsində sistemin itirdiyi enerjinin yerini doldurma (şüalanma mənbəyini həyəcanlanmış hala gətirmə) mexanizmidir. İstilik şüalanması zamanı həyəcanlanmış hala keçmə istilik hərəkəti hesabına toqquşan hissəciklərin (atom və molekulların) öz enerjisinin müəyyən hissəsini digər hissəciklərə verməsi nəticəsində baş verir. İstilik şüalanmasının xarakteri haqqında təsəvvür əldə etmək üçün divarı elektromaqnit dalğalarını keçirməyən qapalı qab daxilində müxtəlif temperaturlu iki cisim fərz edək.
İstilik mühərriki
İstilik mühərriki — xarici mənbələrdəki (xarici yanma mühərriki) istilikdən istifadə edən və ya onu mexaniki enerjiyə çevirmək üçün mühərrikin daxilində (yanma kamerasında və ya daxili yanma mühərrikinin silindrlərində) yanacağın yanmasından əldə edilən istilik mühərriki. Termodinamikanın qanunlarına uyğun olaraq, belə mühərriklərin səmərəlilik əmsalı birdən azdır, bu da istiliyin mexaniki enerjiyə tam çevrilməməsi deməkdir. Mühərrikin dizaynından asılı olaraq 40%-dən daxil olan (və ya buraxılan) enerjinin 80%-ə qədəri avtomobili aşağı temperaturlu istilik şəklində tərk edir ki, bu da bəzi hallarda salonun (yerüstü nəqliyyatın), yaşayış binalarının və tikililərinin (stasionar mühərriklər üçün) qızdırılması üçün istifadə olunur və ya sadəcə atmosferə buraxılır (təyyarə mühərrikləri, əl alətlərinin aşağı güclü mühərrikləri, qayıq mühərrikləri və s.). Belə hallarda yanacaq istiliyindən istifadə əmsalı haqqında danışırlar ki, bu da mühərrikin özünün səmərəliliyindən daha yüksəkdir . Hər hansı bir istilik mühərrikinin əsas cəhəti onun istehlak etdiyi yanacağın növü və miqdarı və bunun nəticəsində ətraf mühitin çirklənməsidir. Buxar elektrik stansiyaları ( Renkine tsikli ilə işləyən istilik mühərrikləri), nüvə reaktorunun istiliyini çevirən (və ya geotermal enerjidən istifadə etməklə), termodinamik radioizotop generatorları ( Stirlinq mühərriki və ya həmçinin Rankine tsiklindən istifadə etməklə və radioaktiv mənbədən çox istiliyi qəbul edən) yüksək aktivlik) və günəş elektrik stansiyaları termodinamik yanacaq növü yandırılmır, qalan hissəsi isə bir çox hallarda uzaqdan daşınan mövcud enerji resurslarından asılıdır. Dövlətdə mövcud olan istilik mühərriklərinin (ikinci dərəcəli mühərriklər üçün enerjiyə çevrilən, adətən elektrik), yanacaq istehsalı yerlərinin və onun daşınması üçün nəqliyyat infrastrukturunun məcmusuna yanacaq-energetika kompleksi deyilir. İstilik mühərrikləri ikinci dərəcəli mühərriklərdən (elektrik, hidravlik mühərriklər və əsaslardan enerji alan başqalarından) fərqli olaraq birinci dərəcəlidir .
Verilənlərin elektron mübadiləsi
Verilənlərin elektron mübadiləsi – rabitə (məsələn, telefon) şəbəkəsində informasiyasının (məsələn, sifarişlərin və qaimələrin) bir kompüterdən başqasına ötürülməsi. EDI vasitələri insanları kağızlarla bağlı gərəksiz işlərdən azad edir və rabitədə poçta və daşıma xidmətlərinə xass olan gecikmələri azaldır. EDI-nin səmərəliliyini artırmaq məqsədilə informasiyanın formatlanması və ötürülməsi standartları işlənib hazırlanıb. Belə standartlardan biri X.400 protokoludur.
Şəbəkəarası paket mübadiləsi
Şəbəkəarası paket mübadiləsi (ing. Internetwork Packet eXchange, rus. межсетевой пакетный обмен) – Novell NetWare şəbəkələrində paketlərin server və işçi stansiyalar arasında ötürülməsini və yönləndirilməsi üçün istifadə olunan təməl protokol. İlk versiyası Xerox şirkətində işlənib hazırlanıb. IPX paketləri Ethernet və ona bənzər sistemlərin paketləri ilə uyğun gəlmir. IPX yeddi səviyyəli OSI modelinin şəbəkə səviyyəsinə uyğundur, ancaq kanal səviyyəsinin bir sıra funksiyalarını da özündə birləşdirir. İsmayıl Calallı (Sadıqov), “İnformatika terminlərinin izahlı lüğəti”, 2017, “Bakı” nəşriyyatı, 996 s.
İnternet mübadiləsi nöqtəsi
İnternet mübadilə nöqtəsi (ing. Internet exchange point; IX və ya IXP) — IP şəbəkəsinin ümumi əsasları. Bu, iştirakçı internet servis provayderlərinə (ISP) öz şəbəkələri üçün nəzərdə tutulmuş məlumatların mübadiləsinə imkan verir. IXP-lər ümumiyyətlə bir çox fərqli şəbəkələrə, yəni məlumat mərkəzlərinə əvvəlcədən mövcud əlaqələri olan yerlərdə yerləşdirilir. Burada onların iştirakçılarını birləşdirmək üçün fiziki infrastrukturdan (sviçlər) istifadə edilir. Təşkilati cəhətdən əksər IXP-lərin hər biri öz tərkib hissəsi olan iştirakçı şəbəkələrinin (yəni, həmin IXP-də iştirak edən ISP-lərin dəsti) hər biri müstəqil qeyri-kommersiya birlikləridir. IXP-lərə əsas alternativ ISP-lərin öz şəbəkələrini bir-biri ilə birbaşa birləşdirdiyi özəl peering adlanan qarşılıqlı əlaqədir. IXP-lər provayderin yuxarı axın tranzit provayderləri vasitəsilə çatdırılmalı olan trafik hissəsini azaldır. Beləliklə, onların xidmətlərinin hər bit üçün orta çatdırılma dəyərini azaldır. Bundan əlavə, IXP vasitəsilə mövcud yolların sayının artması marşrutlaşdırma səmərəliliyini (marşrutlaşdırıcılara daha qısa yollar seçməyə imkan verməklə) və xətaya dözümlülüyünü artırır.
Xüsusi istilik tutumu
Xüsusi istilik tutumu —Ədədi qiymətcə 1kq kütləli maddəni 1K və ya 1°C qızdırmaq üçün lazım olan istilik miqdarına bərabər olan fiziki kəmiyyət. Xüsusi istilik tutumu- kiçik "c" hərfi ilə işarə olunur. Xüsusi istilik tutumu- maddənin enerji uddma qabiliyyətini xarakterizə edir. c=Q/mΔt Q=cmΔt Q-istilik miqdarı c-xüsusi istilik miqdarı Δt - (t2-t1) tempratur dəyişməsi m - maddənin kütləsi Burada Q-istilik miqdarı, Δt-temperatur dəyişməsi, m-isə cismin kütləsidir. “c”-nin BS-də vahidi kiloqram kelvində couldur: [c]=[Q]/[m][ΔT] =1C/1kq*1K=1C/kq*K/1m2/K*san2 Xüsusi istilik tutumu yalnız maddənin növündən və aqreqat halından asılıdır. Suyun istilik tutumu 4200 C/kq*K-dir, bu göstərir ki, 1kq suyu qızdırmaq üçün ona 4200 C istilik miqdarı vemək lazımdır. Buzun xüsusi istilik tutumu suyun 2100 C/kq*K-dir. Dəmir maddələrin xüsusi istilik tutumu daha az olduğu üçün onlar daha az istilik miqdarı tələb edir. Məsələn: Mis(400 C), Qızıl (130 C) və s.
İstilik elektrik stansiyası
İstilik elektrik stansiyası (İES) ― üzvi yanacağın (neft, qaz, daş kömür, biokütlə və s.) enerjisini elektrik enerjisinə çevirən elektrik stansiyadır. İES-lər aşağıdakı amillərə görə bir-birindən fərqlənirlər. Bu əlamətə görə İES-lər kondensasiyalı elektrik stansiyası (KES) və istilik elektrik mərkəzlərinə (İEM) ayrılırlar. KES-lərdə kondensasiyalı turbinlər qoyulur və ancaq elektrik enerjisi istehsal edirlər. KES-lərdən fərqli olaraq İEM-lər tələbatçıları həm elektrik enerjisi, həm də ki, istilik enerjisi (buxar və isti su) ilə təmin edirlər. Belə stansiyalarda təzyiqə görə tənzimləmə ayrımı olan kondensasiyalı turbinlər və yaxud da əks təzyiqli turbinlər qoyulur. İstilik tələbatına görə İEM-lər sənaye tipli, istiləşdirmə tipli və sənaye-istiləşdirmə tipli istilik elektrik mərkəzlərinə ayrılırlar. İES-lərdə istehsal olunan elektrik enerjisinin təxminən 2/3 hissəsi KES-lərdə və 1/3 hissəsi isə İEM-lərdə hasil edilir. Bu əlamətə görə İES-lər buxar turbinli, qaz turbinli və buxar-qaz turbinli stansiyalara ayrılırlar. Buxar turbinli stansiyalardakı turbinlərin gücü 150 (160), 200 (210), 300, 500, 800 və 1200 MVt olur.
Kainatın istilik ölümü
Kainatın istilik ölümü, həmçinin Böyük Donma (ing. Big Freeze) — termodinamikanın ikinci qanununun bütün Kainata ekstrapolyasiyası əsasında 1865-ci ildə alman fizik Rudolf Klauzius tərəfindən irəli sürülmüş fərziyyə. Klauziusun fikrincə, zaman keçdikcə kainat nəhayət termodinamik tarazlıq vəziyyətinə və ya “termal ölüm” (istənilən qapalı termodinamik sistemin son vəziyyətini təsvir edən termin) vəziyyətinə gəlməlidir. Əgər Kainat düz və ya açıqdırsa, o, əbədi olaraq genişlənəcək və belə bir təkamül nəticəsində onun “istilik ölümü” vəziyyətinə çatacağı gözlənilir. Əgər kosmoloji konstant müsbət olarsa, son müşahidələrin göstərdiyi kimi, kainat sonda maksimal entropiya vəziyyətinə yaxınlaşacaq..